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ABSTRACT

-The pursuit-evasion aspect of the two aircraft combat problem is

introduced as a fixed time, zero sum, perfect information differeiitial

game. The purpose of l dissertation is to solve this differential

game problem and to obtain closed-loop guidance or control laws. A

realistic aircraft model is presented for which a solution of this

combat problem is desired',)Because of the non-linear dynamics assoc-

iated with this model, an p~Nmal closed-loop solution cannot be

obtained. Three additional simplified aircraft models are introduced

as approximations to the realistic model. Optimal solutions and

closed-loop control laws are obtained for each of these models.

Analysis of the solutions and control laws reveals that they are

characteristically similar and to a certain extent independent of the

aircraft model. This enables the formulation of an approximate

closed-loop ccntrol law for use with the original realistic model.

The optimality of this control law is established by applying it to

the pursuer in a differential game problem while the evader determines

the best open-loop evasive strategy.

44 U
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S~ I. INTRODUCTION

In recent years, the problem of determining the performance

requirements for a superiority fighter aircraft has received the

attention of many researchers. The basic difficulty is the lack
I.f numerical measures to evaluate the cffectiveness of one aircraft

when pitted against another in a competitive or combative situation.

During an aircraft combat engagement there are periods when one

or both aircraft may be passive, aggressive or evasive depending

upon the relative capabilities and positions of the aircraft and

the desires of the pilots.

This dissertation considers the pursuit-evasion aspect of the

combat problem. One approach to the solution of this problem is

to determine the control of one aircraft which pursues in some

optimal manner another aircraft which either employs a predetermined

control law or follows a pre-specified trajectory. The difficulty

associated with this approach is that the optimal solution to one

problem is not optimal if either the pre-specified control law or

trajectory is changed. Simply stated this means that no one guidance

scheme is optimal against all types of evasion. If optimal pursuit

and optimal evasion can be considered together, it becomes possible

to derive a numerical measure reflecting the capabilities of the t•"

aircraft. The prcblem of determining the optimal controls for such

a problem is a differential game problem. In order to have any

practical application, the solution to this problem must provide

feedback strategies, or what is equivalent, a continuous real-time

solution of open-loop strategies.

I
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-s U intent of the dissertation to dete-emine optimal 4

o' near optimal feedback strategies for a pursuit-evasion differ-

ential game between two aircraft. The solubility of this problem

is dependent on the model chosen to represent the u.rcraft. An

impnortant aspect of this study is the investigation of different

aircraft models, characterized by various assumptions and approxi-

rftions, in an effort to determine opthmal or "near" optimal

-Iosed-loop feedback strategies.

The purpose of this study and the realistic aircraft model to

c• considered is discussed in Chapter II. In Chapter III, a

differential game problem is defined. Necessary and sufficient

conditions for a solution of this problem are presented. Chapters

-hru VII are concerned with the solutions to the pursuit-evasion

I]ferential game problems characterized by different aircraft models.

,te solutions and control laws derived in these chapters are applied

tw•, ' realistic problems in Chapter VIII. A closed-loop control

ýw far application with the realistic aircraft w4el is synthesized

mnd discussed in Chapter IX. Conclusions and recommendations are

presented in Chapter X.

It is believed that there are two main contributions resulting

from this research. For the first time, a realistic aircraft

pursuit-evasion problem is presented and solved. The solution to

this problem has important application in the areas of aircraft

Aesign and performance, and aircraft tactics. The second contribution

is the demonstration that reasonable solutions to differential game

problems can often be obtained through analysis of simplified models.

It is believed that this differential game modeling approach can be

2
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applied to a much larger class of differential game problems involving

realistic aircraft models.

I3
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tI *. >?T *j-lrOF THE PROBLEM

::,se ot Luit.,ou. Ction and Approach

The pur|pose of this dissertation is to solve the two-aircraft

• , .',1:-evrision differential game and to obtain optimal closed-loop

'rol latts or strategies for the two aircraft. The extent to

' •tly'tl closed-loop strategies can be determined is highly

ýttt on the dynamics chosen to represent the aircraft. In the

- o.tivil feedback solutions cannot be found, "near" optimal

.• ,Pii1~tcly optimal feedback strategies are sought.

tn :approaching this task, a standard aircraft model is defined.

A.-kvlication of the necessary conditions for a saddle point solution

-% .o point boundary value problem, for which closed-loop

t ••ws could not be found. Open-loop controls and solutions

".Itained. however, by means of iterative numerical techniques.

s step is to determine what simplifications can be made to

*. 3rd model dynamics so that closed-loop strategies can be

.;ned. Three simplified aircraft models are considered and

,...••d-loop strategies are obtained for each.

;t is discovered that the optimal paths for the differential

:...;e problem solutions with the simplified models exhibit similar

",... stics to the optimal paths obtained for the standard

The similarity of solutions suggests a method of synthesiz-

xeedback control law for the standard model. The optimality of

y.ynthesized control law is evaluated by formulating a one-sided

-r.tial game or optimal control problem in which the path of

,i,,"ter is determined through application of this control law

4
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while the path of the evader is optimized against it.

Differential Goae Problem

The pursuit-evasion problem is to be formulated as a two player,

zero sun, perfect information diffemf~ntial game. The game is assumed

to take place in the vertical plane and terminates when the terminal

manifold defined by

I[tf (tI l a T- tf a 0

is reached. T is a fixed specified time, tf is the time when the

terminal manifold is reached and x (tf) is an n dimensional vector

representing the state of the game c-valuated at the terminal manifold.

The range (R) between the two vehicles at termination is the payoff

and is denoted as J. It becomes obvious, then, that in this pursuit-

evasion game the evader will strive to maximize the range at termina-

tion and the pursuer will want to minimize R at termination. Thus,

one player's gain is the other player's loss. Such games are referred

to as zero sum differential games. The game is assumed to be a gSame

of perfect information, where each player (aircraft) knows the present

state of the game x (t) along with the dynamics and capabilities of

his opponent.

Aircraft Dynamics

* The following assumptions are made in regard to the aircraft

dynamics:

(a) The aircraft are considered to be point masses.

(b) The ecrth is flat and the acceleration of gravity is

constant.

S



(c) The thrust is constant and tangent to the flight path.

(d) The aircraft weight is constant.

J1 light of these assumptions the aircraft equations of motion

h -V sin y

V = (G/W) [(T - D) cos y - L sin yJx

V h (G/W) [(T - D) sin y.. L cos yJ, G

yis defined by

-1 1

y=tan (V /V)

.~i~otes the horizontal distance, h the altitude, V and V hare the

a• c Tohnents of velocity V, y the flight path inclinat.on, W

'ý;ght, D the drag, L the lift, T the thrust and G the acceleration

..nvit y. The forces acting on the aircraft are shown in Figure 1.

Figure 1. Aircraft Forces

6
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The aerodynamic forces are defined by

"D a 1/2P , L 1/2p•V S C
CD L

where P is the air -density, S a reference area, C the drag coeffi-
D

clent and C the lift coefficient.
L

I general, (Ref (111), CD and CL are functions of the angle of

attach a, the Mach number N and the Reynolds number Re with the

functional relationships

C, C c (a,M. Re) , C (a. M. Re)
D D L CL~aMf

For angles of attack below the stalling point a ,:n be eliminated

from the above relationships to yield

C = C C , M, Re)
D D L

which is called the drag polar. For relatively constant values of N
and Re the dependence of CD on 1 and Re can be neglected. If the

assumption is made that the drag polar is parabolic with constant

coefficients, the drag and lift coefficients satisfy the relationship

C D CDC + k CL2

where C is the zero-lift drag coefficient and k the induced drag
Do

factor. The assumption that the drag polar is parabolic is in many

cases a good approximation to the experimental polar. Its accuracy

depends on, the lift coefficient as well as the aircraft configuration.

This approximation is extreme!y tiseful in analytical work and is

therefore widely used.

The additional assumption of constant dynamic pressure (Qul/2o V )

is made. This assumption is not severe for the pursuit-evasion Same

where velocity and altitude changes are minimal. This leads to the

7
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',ion of motion which are referred to in this study as the standard

-ft model.

x a V V COs y
x

h = V = V sin y
h

2V (Q S/m)[(C T- k C L) cos y -C sin yJT L L

2Vh (Q Slm)[(CT - k C ) sin y C C cos y] - GT L L

C•CT is a coefficient formed from Q S C = T - Q S CDO"T T D

"cc;1 crat ion Vectograms

in (Ref 110]) Isaacs introduces the concept of a vectogram to

as a function of the state of the game the allowable choice

ý:%trols for each player. For example, simple planar mozon with

•e v'elocity direction as the control can be depicted by the circular

.,ra, shown in Figure 2.

"(VELOCITY
j DIRECTION)

Figure 2. Circular Vectograi

The concept of control vectograms has been a convenient one

I- -
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during this study because it provides a visual description of the

force relationships of the problem. For this study, the definition

of a vectogram is modified to include both the thrust and aerodynamic

forces acting on the aircraft. Gravitational forces are not included.

I The acceleration vectogran for the standard aircraft model is shown
in Figure 3.

From a vectograu point of view, the differential game problem

can be viewed as the problem of determining how to employ the avail-

able forces in order to best pursue or evade the opposing player. It

is obvious that a continuous compromise or tradeoff between force

PARABOLIC DRAG POLAR

,4-,

'--rail - CC - k l," )

9
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magnitude and direction must be made.. The problem of determining how

to employ the available forces is difficult because the force or
acceleration magnitude available in a given direction varies with the

aircraft's flight path direction. The approach taken in this study

is to consider various simplifications of the standard aircraft model

acceleration vectogram that will yield a problem for which closed-loop

solutions can be found.

10
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III. THEORY OF DIFFERENTIAL *I0ES

The pursuit-evasion problems treated in this study are formulated

as fixed time, zero sun, perfect information differential games. The

purpose of this chapter is to define mathematically this class of

differential qames and to present necessary and sufficient conditions

for solutions to these problems. The basis of this chapter can be

found in References (11, (2], and [4).

Mathematical Formulation

The differential game problem treated in this dissertation is

defined by the dynamic system

x - (x, u, v, t) x (t ) x (1)S0 --o

where x is an n-vector, u is the scalar pursuer control and v is

the scalar evader control. The goal Is to find the controls u and
0

v such that

(x (t,) tf) "0

and the performance criteria

tf
(x(t),t+I L N(x, u, v, t) dt (2)

£ f t
t 0

* satisfies

J (u ,v) J (u ,v ) J (u,v) (3)

fU* V* 0 0

If u and v can be found, the pair (u , v) is called a

saddle point of the game and J (u , v ) is called the value of

the game. Eq (3) is equivalent to the following equations

2 • • •• m •• s



J(u, v )=Min J (u, v)
UuU

Max J (u v) (4)
vV ~

Min Max J (u, v)
UCU v4V

where U and V are admissible sets for u and V.

Eq (4) and hence the existence of a saddle point are dependent.
3j, the condition that

Min Max J (u, v) Max Min J (u, v)
uEU VvV v4V U&IJ (5)

Necessavry Conditions

A necessar/ condition for a saddle point solutiors of the

differential game problem, defined by Eqs (1), (2) and (3) Is that

thiý Hamiltonian defined by

T
H (t, x, A, ui, Y) - A~ f+ L (6)

must be iiinimized ove-r the set of admissible u and maximized over

the set of admissible Y and that

i*

I__H Max Min H Min Max H
v ii U v (7)

X\ is the n-dimensional costate vector and the tostate differential

'ýqtat ions are

X -H (8)

lX

The transversality conditions are given by

( t) (9)

Eq (7) implies that the maximization and minimization processes

commute, which is not generally true. It is true, however, If NI

12
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can be separated into two functions, one of which is independent of

u and the other independent of v. For example
1 _2

H (t, x, I, u, v) a H (t, x, , u) H (t, x, A, v)

For the problems considered in this dissertation f, L, and hence H

are separable. This insures that the minimizing u and maximizing

1v provide a saddle point of H at each point on the optimal path.

Unfortunately, separability of H does not imply separability of J

and, therefore, solutions to the two point boundary value problem

given by) hqs (6), (8), and (9), may not necessarily satisfy the saddle

point conditions given by Eq (3). A procedure for verifying the saddle

point conditions are given in the section on sufficient conditions.

Necessary conditions require that the Hamiltonian be minimized

over the set of admissible u and maximized over the set of admissible

v. If H is linear in the control variables and if aH/3u and aH/av

are equal to zero the Hamiltonian is independent of u and v and it

is not possible to maximize or minimize H with respect to these

controls. lbtremal arcs on which 3H/3u 0 or 3H/av 0 are called

singular arcs. In (Ref [1]), Anderson presents the characteristics

of singular solutions in two-person, zero sum differential games

including a set of necessary conditions for the optimality of the

solution. Defining S B aHl/u, necessary conditions for the existence
p

of a singular solution are that S (x, A) and all time derivatives of

S i*ust vanish. Successive differentiation of S generally results
p p

in an equation which explicitly contains u which allows the determina-

tion of the singular control u . Similar statements apply for theS~S

evader when S 5 ll/av a 0 The necessary conditions for the singularS~e
control us to minimize J and for v to maximize J are

is
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dqq
(- u dt~

nd tj:d:qSe1 5 .o n(10)

(-)q 2

__I• a ve

where 2q is the order of the derivative which explicitly contains

u and v. No sufficient conditions for optimality cf singular solutions

are available.

It was previously stated that the optimal solution to the differ-

ential game problem is the pair of controls (u v ) which provide a
saddle point of J. If the pair (u , v ) is given as (u (t), Y (t)),

one speaks of an open-loop solution. If the controls are expressed

as functions of the instantaneous state and time

u =k (x,t)
U

v -k (x, t)

one has what is known as a feedback or closed-loop control law.

The importance of the difference between open and closed-loop

controls in differential games can be made clear by returning to

the inequalities of Eq (3). The second inequality can be considered

in two ways depending on how the minimizing player considers the

maximizing player's controls to be expressed. We can have either

min J (u, v (t)] = J (u (t; x , t ); v (t)]
u U 0

or

14
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min J [uk (x, t)J uJ (11 (t; x *t )k (x_. t)J
im €._ €,, -o, o €v_

The latter requires that u be optimal arainst an opponent

whose control is produced in a closed-loop manner implying that

v can inmediately take advantage of any non-optimal play made by

u. It is obvious, therefore, that in differential gave problems

feedback strategies must be considered. If the open-loop problem

can be solved analytically, the open-loop control can be computed

instantaneously and continuously for any initial state and hence

generate an optimal closed-loop control,.

If one assumes the existence of strategies

u" k (x, t) and -k (x, t)
u v

that provide a saddle pcipt of J, the following significance to

Eq "3) can be given. If the maximizing player uses his optimal

strategy, he is guaranteed a payoff at least equal to the value

J (u , v ) and if the Mint.izing player selects his optimal strategy,

he guarantees that his opponent will get a payoff no greater than

the value.

Sufficient Conditions

In the previous section, it was pointed out that solutions to

the two point boundary value problem given by Eq (6), (8), and (9),

do not necessarily satisfy the saddle point conditions

J (u, v) 1.J (u, v ) J (u, )

Verification of the saddle point conditions can be accomplished

directly by verifying the inequalities of Eq (3) separately through

the consideration of two optimal control problems. The first

15
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inequality can be verified by solving the problem* *

J Cu, v ) = mn J (u, v*)
u

where v may be given in open or closed-loop form. The second

inequality is verified by solving the problem

J [u*, v') = max J (u*, v)
V

where u may be expressed in open or closed-loop form. The saddle

point is established if u* and v* from both problems are the sae.

Sufficient conditions for a saddle point solution for this differ-

ential game problem are discussed in Appendix A. When u and v arel "
interior controls the following conditions are sufficient for (u *, v*)

to provide a saddle point of J.

(I) The strengthened Legendre-Clebsch conditions:

H H >0 H O0
uu

(2) The non-existence of a conjugate point on [t, tf)

for an accessory minimax problem.

1

16



SIV. PURSUIT-EVAbION DIFFERENTIAL GAME - STANDARD AIRCRAFT MODEL

A differential game problem using a reslistic aircraft model was

discussed in Chapter II. The purpose of this chapter is to obtain

open-loop solutions to this differential game problem using the

necessary conditions given in Chapter III.

Statement of the Problem

The problem is to determine a saddle point of
2 h2 2 1/2

J (t R(td U(x -x + (he
p e P tatf

subj ect to

Sp Ip

x mV

• XP

P (11)

V =De Ce"ke Cp2)cos - sinye
Ip p TO p LP p Lp p

* 2
a D ((C -k C )sin r *C Cos YjG

hp p T ~ p p

x V

(12)
* 2

V 0a D [ (CT -k C e) Cosy -C Losin Y

V D ((C -ke CL 2)siny Y CL, cos ye) G
he e To ~ * L

where
-1

y tan (V /V)
p pxp

17
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tae (V he/Vxe)

and the subscripts p and e refer to the pursuer amd evder, rec-

tively. The final time (tf) as well as the initial vums of tU state

variables are to be considered specified. CLP and CL are tam irols

for the pursuer and evader, respectively. They are bowd by
C (C C?

Lp min Lp Lp max
(13)

Le min -- Lo - I~e sax

For convenience D and D are substituted for (Q S/rM) •d (Q S/n)O-

S, CTp, De C are positive constants.
P T Te

Nccessary Conditions

Applying necessary conditions for a saodle poia selatfs, t2m

IHamiltonian is

i1 A xe Vxe + Ahe Vhe A AV" D [(C - k 0hC214 os yo
- si %1÷ 'he Vie [Ce T e c*1)

-C sinY + A D [(C - k C sein T
L~e e Vhie e Te e 0

+ CLe cos y A G + V

+ AVxp Dp p(CTp - kp C4 2 LCos Yp o C L p

ShA D [(C o k Cp2) sin Y + C Cos Y - G
Vhp p Tp p Lp p I* P VhP

The Hamiltonian is to be minimized with respect So C =W
LP

m:aximized with respect to C subject to the constraints given byLe

Eq (13). If the minimizing and maximizing controls are on tke interior

of their admissible sets, it is necessary that

is
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3H/3C .0 3H/ DC .0,Lp LO

and
2 2 2 2

SH/I CLp > 0 L e
Lp Le --

Solving aH/3C - 0, the following expression for C is obtained.
Lp Lp

' •Lp tan (0 y) (2kS
LP p p r

where

6 tan' 1 (A I )
p Vhp Vip

Similarly for a, aHl/CL a 0 yields

utan (0 - y ) (2k)•Le • •

where
-l

to xtw (A A)
S-Vhe Vxe

p and o are minimizing and maximizing controls respectively,
LP L

"provided that
2 2

3 H/CL u 2k PD p(sin y 1. I .P+cos;y pA JxP OLI',. pp p vh,• p ÷ - vxp]

and (14)
2 2

3I;)C - 2k D (sin y A cos Y A 1'0
Le e 0 0 The 0 Vxe

The control CLp that minimizes H subject to Eq (13) is

C >
Lp max Lp Lp max

C-i -C 'C (I
Lp LP Lp sin -Lp - P maxc (S

C C C
Lp sin Lp Lp sin

19
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The control C that maxfmizes H subject to Iiq (13) is
Le

C >
Le max CLe CLe max

C" C <•Le L CLe (16)
Le Le Lemin L- max

CLe min UI.e CLe min
L

The Euler-Lagrange or costate equations are

Ai =0
xe

X =0
he

AVxe - A D ((C - k C 2) a(cos ye)/DV
Ve Xe Vie e Te e Le a xf

-CLe 3(stn y )/3V xeI - XVhe D [(CTeL•e x h r (17)

-ke CLe 2 ) 3(sin yV)/3Vxe + CLe 3(cos y )/0 V 0

2
Abe -Ahe- AVxe De ((CTo - ke C Le)a(cosy j eiVhe

-C 3(sin ye)/3VheI -A Y D [(CTOLe e e he (C

-ke C Le2) 3(sin y)/3Vhe + CLe 3(cos ye)/)V e]

wdnere

3(cos y )/WV sin2 y AV(v 2 V )
e xe e xe he

a(sin v. )/3 V - sin y cos y /[V 2e + V h21/2
•snV xe • • xe he (18)

;a(cos y )/3V he - sin y cos y /[V 2, hV e 2]/2
e he e e xe he

3(sin y )/3V C Cos 2 y Ve/v 2 1/2
* he * x* he

20
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) 0
xp +

t. A 0..
hp

A -A -A D [(C - k C 2) a(cos )/3V
Vxp xp Vxp p Tp LP p xp

-C 3(sin y )/3V ]-A D [(CLp p ip Vhp p Tp

-k C 2 ;(sin yp)/3V +C 3(cos, Y)/3V (19)

p Lp p p LpX

+ Vhp -A "hp - A~x UPDp ((C Tp - k p C Lp2 3(€os Y p)/3Vh

-C Lp ;(sitn y p MV hpI - k .h D P (C T

Ak C p2 ) ;)(sin y)/ p +Cp ;(cos Yp/Vhp

where the partial derivatives are defined as in Eq (18) with the

subscript * replaced by p.

The transversality conditions defined by T (t) * R are
- f xtf

Ib (tf) -. 1h (tf) - x- )/R It . t

x he (tO f) -Xhp (td) (h- h p)/R t a t f

AVxe (t) 0

)'Vhe (tf) •0

VXp (t f)

"A Vhp (f ) 0

Problem Solution

The problem stated above is a two-point boundary value problem

21
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(TP11P). Because of the non-linearity of the problem, no closed

form solution is known. Open-loop solutions can be obtained only

L'•rough the use of numerical iterative techniques.

Trajectories satisfying the necessary conditions for a saddle

puint solution to this problem may be generated by assuzir.g terminal

tate conditions

1 - t " a t fl

and simultaneously integrating backwards in time the state differential

equations given by Eqs (11) and (12) and the costate differential

uqua.ions given by Eqs (17) and (19) with conditions at tf given by
(0n , .

!Eq (20). The saddle point controls, CL and are given by Eqs (14)

and (IS). Thesea trajectories represent open-loop solutions to the

differential game problem where the specified initial state conditions

. (t ) correspond to a point x (t) on these trajectories and the fixed

flight ti;me of the game is equal to t - t.

Figures 4 and S show two solutions obtained in this manner. The

data used to obtain the solution shown in Figure 4 is

x (ti) f 33383 feet x (t f a 28262 feet

he (t) = 18808 feet h (tf) a 27278 feet

V (t f) = 603 ft/sec V (tf) a 740 ft/secxe xf

Vhe Ctl) = -996 ft/sec V (t I u -1224 ft/sac
Ve(f hpr

D = 122 ft/sec2  D - 192 ft/sec2

e p

CTe = .06 C a .04

22
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Ik .S k .S.
C p

Ic• jI_. Ic .I•
Le LP

The trajectories in Figure 4 can be viewed as the solution to the

differential game problem where: the initial position of the pursuer

is above and behind the evader.

The data used to obtain the solution shown in Figure S is

x (t ) f 35000 feet x (td) a 32000 feet
•f p

h (t) u30000 feet .h (t ) 25000 feet
e f p•

Vxe (tf) U 688 ft/sec V (tf) a 727 ft/sec

V (t) a 580 ft/sec V (t ) a 612 ft/sec
he f) hp f

D & 160 ft/sec2  a 175 ft/sec2

C .06 C -. 04

kc S. k -S
S• p

Le Lp

In the differential game problem corresponding to this sclution, the

pursuer is initially behind and below the evader.

These solutions will be used as a comparative base for the

solutions obtained using the simplified aircraft models which are

analyzed in the next three chapters.

2S
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V. PURSUIT-EVASION DIFFERENTIAL CAIE - STATIC MODEL

In Chapter II, the pursuit-evasion differential game problem

w.as cast in terms of the acceleration vectogria associated with the

aircraft model. The difficulty in solving the differential game with

the standard aircraft model resulted from the parabolic shape of the

vcctogram and its orientation with respect to the changing aircraft

i'light path direction.

In this chapter the problem is simplified by assuming that the

crientation of the vectogram and the aircraft flight path direction

_ar fixed. This is equivalent to a static aircraft analysis with a

zonstant flight path angle. The acceleration vectogram for this model

is the same as Pigure 3, except that the flight path inclination angle

-.s fixed.

The purpose of this chapter is to solve the pursuit-evasion

differential game problem with the static ;irc-z-ft model and to discuss

the application of the resulting closed-loop control law to the

standard aircraft model.

Statement of the Problem

The problem is to determine a saddle point of

Se P P t at

svbject to

X wV
p xp

h V
p hp (21)

Vxp D p ((CTp kp C cos C-LP sin E1

26
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S • OD [(CTp kp C sin C L cos]- G

x -VoX Xea xe

h Vh
* h(22)

V D ((CT - k CLe') cos # - Cl, sin *]

D [(C 7 - k C 2) sin * C cos ] G
ehe e Le Le

where the subscripts p and e refer to the pursuer and evader. respec-

tively. C is *he specified constant flight path angle for the pursuer

and # is the specified constant flight path angle for the evader. The

final time (tf) as well as the initial values of the state variables

are to be considered specified. C Lp and CLe are the :ontrol variables

for the pursuer and evader, respectively. They are bounded by

CLp min - CLp - Lp max

CC C 
(23)

Le min Le Le max

D p, CTp, D , CTe are positive constants defined as in Chapter IV.

Necessary Conditions

Applying necessary conditions for a saddle point solution, the

Hamiltoaian is

H X V + X V +A D(.C - k C 2) cos*
xe xe he he Vxe e Te e Le

-C sin *J.+A D [(C -k C 2 ) sin$
Le Vhe e Te e Le

+ C cos *•]- , + A V + X V +
L~e The xp xp lip lp

27
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z2

A p (V(C -k 2)C osC-C sinc1•:Vxp p pp Lp Lp

i o (( - k C 21sin • +C cos I|-X C
+ AVhp p [(CYp p Lp Lp Vhp

The !Hamiltonian is to be minimized with respect to C and maximized
Lp

with respect to C subject to the constraints given by Eq (23). If
Le

the minimizing and maximizing controls are on the interior of their

admissible sets, it is necessary that

aHfaC > 0 2H/aC 2 0

Lp Le
and

•2H/aCLp _> 0 H/•~CJe _ 0

Solving al/3C. = 0, one obtains

C =tan (0 - &)/(2k (24)
Lp p p

where

O -tan- (Ah/AVp) (25)
p Vhp xP

Similarly for the evader, H/aC Le 0 yields

C = tan (9 - *)/(2k a (26)

where

-1
0 e tan (A / 1) (27)e..,. , Vh• Vxe

L and i are minimizing and maximizing controls rospectively,
• ,: Lp Le

provided that
2 - 2kp DP (sin C AVhp + cosC A VXp 0

and

28
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2 2
SH/2 C 2 - 2k b [sin *A + cos I vxe -

The control CLp that minimizes H subject to Eq (23) is
S"C~pL-

C C. > C
Lp max Lp Lp max

CLp CLP CLpmin- 'CLp- CLpmax (28)

C Lp min C--ýLp - Lp nin
*

and the control CLe that mawimizes H subject to Eq (23) is

C C "C"Le max Le Le vx
*

C C C CL (29)
Le Le Le min- * .~i(9c •u (

Le min C Le min

The cestate equations are

A 0

A 0
he

kVe xe

Vhe he

Xl,

A -0
hp

• . IVhp ='" hp

29
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The transversality conditions are
A (t)u- - (tf)u- -Xp)/R Itf

xe f xp efp(x tatf

A (tf) - hp (tf) (h -h )/R tatf

A (t aO
Vxe f

A (t) 0
Vhe f

x (td a 0
Vxp

AVhp (t 0

Problem Solution

Integrating the costate equations and applying the transversality

conditions yields

U~p (t) =-XP (t f (t - t)
Vxp ~ Xp f f

(t) - - A t (t - t) (30)
Vhp lhp f f

AVxe (t) •- xxe (tf) (tf-t)

vhe he f (tf

From Eqs (30) and the transversality conditions

[xVhp (t)/xVrp (0) A hp (tf)X (t f

i(h " h )/(x - p tS• p • t~tf

and

[Axh (t)/A (0)1 - x (t)IAX (t?)
SVxe he xe

30
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• p * p ttf

Comparing these equations with Eqs (25) and (27) shows that

oe (t) a o0 (t) a o Ct,)

where 0 is the angle. measured from the horizontal to the line of sight

between the pstsuer and evader at termination. Since 0 and 0 are

consvm(t functioDs, the controls CLp and Cs- are constan*s from Eqs

(24), (26), (28) and (29).
Integrating the state equations V and V X and combining the

o T ox L xpT

results y(elds

V (t) - V Mt - V (t) V (to
xe Xp x 0 o xp (00

+ (D [(Ce- k CL 2 ) os C sin (2 - D) [%

* To e Le Le p sin

-Dk C* 2) Cos C__ sin Q]}(t - t)
p -P LP 0

Integratieg Eq (31) yields

e p (t) 0 (t)- (t 0 (v (t -v (t)] (t-p 0

+ {D [(C -k C2) Cos -C sin *1 (32)

o Te e Le Le
L2 * O)22

D [(C• -k C ) C sinos C sin Q(t -t2

The following equation is similarly obtained for the h components of

the state equations

he (t) h hp (t) a hea (to " h 1, (to 0 + V he (to 0 V hp , (t o) Mt - to 0

+{De [(Ce ke C sin C Ce os t](33)

D [(C _ k C 2) sin C • C cos 0])(t t-

p Tp pLP Lp

31
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Dividing Eq (33) by Eq (32) and evaluating at t tf yields 14k
tan 0 {he (t p " hp (to) + [Vhe (t) " VhP (to)0(tf t )

+ {D [((C- 1, he2sn o 0 1
e Te e C 2 ) sine CLecos*J

-D [(C - k C* 2) sin
p Tp p Lp

+ C* cos &1)(t - t 2 (t) -x (t) (34)
LP • 0oy x p 0

+ [V (t) - V X t (t M t )xe o xp (tf to

*2) *
+ WD [(C-- - ke C 2)Cos -Ce sin 1#]

-D [(C k C) cos -Cp sin 4])(tf- t )2/

p Tp p Lp LP f 2

Eq (34) is a transcendental equation with the unknown parameter 0

since Cp and C Le are functions of 0 only and all state components
Lp L

are specified at t . This equation can be solved for 0 using a
0

digital computer. The determaination of 0 allows C and CLe to be

computed and therefore effectively completes the solution to this

differential game problem. The ability to continuously determine the

optimal controls as a function of the present state of the problem and

the time to go constitutes a closed-loop control law for this differ-

ential game problem.

Ps.udo--ynamic Application

The differential game problem solved in this chapter is based on

a fixed orientation of the aircraft flight path. A possible applica-

%ion of this solution to the standard model problem of the previous

chapter would be to solve the static problem at each integration or

specified time step as if the flight path angles of the aircraft were

32
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to remain fixed. After detemining the controls C and C in this
Lp Le

manner, they would be applied to the standard model dynamics. This

procedure would be a closed-loop control law for the standard model

problem. Results of the application of this procedure are presented

in Chapter VIII.

'C33
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VI. PURSUIT-EVASION DIFFERENTIAL GAME - ZERO INDUCED DRAG MODEL

In this chapter another aircraft model is considered. This model

is characterized by the simplification of neglecting drag due to lift

(induced drag). This simplification is accomplished mathematically

by assigning the value zero to the induced drag factors k and k in
p e

Eqs (11) and (12). A further simplification is introduced by neglect-

ing gravitational forces. The improvement of this model over the

static model is that the flight path orientation is not fixed (y i 0).

The acceleration vectogram representing this model is shown in Figure

6 and is termed the zero induced drag model.

CL

Figure 6. Acceleration Vectogram for the Zero Induced Drag Aircraft

34
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V •The purpose of this chapter is to solve the pursuit-evasion

differential game with the aircraft modeled as above.

Statement of the Problem

The problem is to determine a saddle point of

(t R (tf) (x x + (h h 1112
Sp e P ttf

subject to the state equations

X -V
p XP

p hp (35)
Dxp.a Dp [CTp Cos yp - CLp Sin ps

ah D [CTp sin ]p + CLp Cos p]

1;1

x V
• xe

h "Vhe (36)

V aD (CTe cos y C sin ye]
x.e c e Le e

Vhe D Da CTe sin y + CLe cos ye]

where

-l Itan (Vhe/V)y•e S tan-1 JVhe/vx !

and the subscripts p and e refer to the pursuer and evader, respec-

tively. The final time (tf) as well as the initial values of the state

variables are specified. Dp, CTp, De, CTe are constants defined in

35
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Chapter IV. C LPand C Leare the controls for the pursuer and evader,

respectively. They are bounded by

CLp min C Lp - Lp max

C C <CLe min Le Le max

Anialysis of this problem is made easier if the state variables V.and

hare replaced by V and y where

V VX h 21 / and y tan-1 (Vh/V)

The resulting state equations are

x V Cos Y

h rV sin y

V zD C (7p p Tp

[rxD C /V
p p Lp p

x -V cos y

h = V siny

e Ve (38)

V =e D C
pe Tp

p= Dp CLp/Vp

whic). replace Eqs (35) and (36).

"e~cessarey Conditions

Applying necessary conditions for a saddle point solution, the

IHamiltonian is

36
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H a x V cos Y A h V sin y V +

ye e c Le/Ve + e V Cos y + A C sin y
Y e Le e xp p P hp p p

[ 
*A•Vp DPCTp "A D~ CLPv

VP TP YP p Lp/p

The costate equations are

3Cp

S=0
hp 0

A A COS y A sin y */Vp xp p hp p yP P Lp p

Ay V (A sin Y - A COS)Yp p Xp P hp yp/

A =0
xe

e he
AVV2 - A COS y eAhe Sin y + A DC /V 2iee 

ye e Le e
Ay = V (A sin y - A cos y)Ye Xe * :0e •

The transversality~conditions 
yield

A e (t) . A t) (xt x - )/R

he (tf aA ft a( )/RI
Sp 

e p ttfA x (tf) at,he f hp ( (h -h )/Rf• • p ta

A| V (ti a 0

•iJA Ye ( t")a

"".tt =0

37
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A~ (t 0O
Yp f

Minimizing the Hlamiltonian with respect to Cp ,nd maximizing with

respect to C subject to the constraints on C and CLe defines theSL e ( pL

controls

C Le mx; S 0 0

CLe = Le min S a < 0

(39)

CLpmax S p 0

- Lp *
C Lp minS p

where

Se -H/3CLe XYe De/Ve

Sp 5 3H/fC Lp A .p D /V
Lp fpp p

However, if S is equal to zero, the Hamiltonian is independente

Uf CLe and it is not possible to maximize H with respect to CLe
LL

Similarly for 5 equal to zero, H cannot be minimized with respect
P

ta C . If S or S are zero over a non-zero time interval, a(. p e p

singular control in CLe or C Lpmay occur. Necessary conditions for

the existence of singular solutions were presented in Chapter III.

For a singular control in C It is necessary that S and all itsLp p

time derivatives vanish. Similarly, for a singular control in CLe"

• is necessary that S and all time derivatives of S vanish. These
• 0

conditions are now examined to determine if singular solutions exist

for thi, problem.
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t •Setting S a 0 yields

Vp
S mA D/V "0

P YP p P

which implies that X = 0
Yp

Setting S = 0 yields

S a D 1I /V p-A /v J . op p YP YPP

which implies V A /V a 0 since 1 - 0. Substituting for A

p 1Y p h p Yo

which implies that tan y x /X along a singular arc

Setting S a 0 yields
P

SYCos Y + co sin T]O

p p•p p n hp hp

÷D sCn ,- cosy A siyl 0Q
hp p pDp Yp fAXp CsYp +Xhp snYp 0

2
0p C p(AXCo p +Ahp snYp / pa0

since A and A are zero from the costate differential equations.xp •hp

For S to be zero, either C must be zero orp Lp

AXp cos fp A h sinY p * 0

Assuming [Xp cos yp + A hp sin y p equals zero implie- that tan yp=

- AX /Ahp along a singular arc. This is in contradiction with tht

result of Eq (40). It is concluded that along a singular arc the

39



singular control CLps is equal to zero. A necessary condition for the

optimality of this solution is that

-as p/3CLp > 0 (41)

Application of this condition gives

-Sp/3CLp -[AXp cos 7p * Ahp sin pJ (D p/Vp) (42)

To show when this necessary condition holds, transversality conditions

require
Xxp (t) -(x - X)/ tt

x ~p f ett

and

A (th ) = -(he -hp)/R Itat

Defining 0 as the angle measured between a line from the pursuer to

the evader and the horizontal at termination A (tf) and Ahp (tf

oecone

A (t_)A = A (t) a - cos 0

Ahp (tC = Ahp (t) a - sin 0

since X and Ahp are constants. Making these substitutions in Eq (42)

gives

-asplac = cos (C - Y ) (43)

Along a singular arc S = 0 requiresp

[X siny Ahp cos yp] a sin (0 p 0[xp pi hp pp

which implies that YP 0 or yp a 0 + r. Substicuting yp 0 and

y 0 + w into Eq (43) yields
p

--a Sp/ACLp = I > 0 for p

40
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and

Sil -3SS/3C a-1<0 for y uQ#1
p Lp p

Therefore the necessary condition Eq (41) is only satisfied when

y y_ 0. A similar analysis for the evader reveals that S * 0 over
Sp e
a non-zero time interval corresponds to a singular solution with the

singular control C 0.
The optimal controls for the solution to this differential game

problem can now be given as

[CLP p
CLp 0l S =0

P

(44)

C S #0S CLe •

CLe 0 S 0

where C LP and are given by Eqs (39).

Problem Solution

In an optimal solution to this problem there are three choices

of control depending on whether S and S are greater than, equal to,
p e

or less than zero. In order to construct an optimal solution to this

problem the allowable ,equences of these controls must be determined.

The first question to consider is whether or not a singular arc

can be followed by a non-singular arc in an optimal sequence of

controls. To answer this question assume that the pursuer is on a

singular arc and applies the control CLp On the singular arc

41
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the following is true.

(1) y -g
p

(2) A, = 0

VP

(3) A mV sin (0- ) o
VP p p

From Eqs (37) one sees that the application of the control CLp

causes y to increase so that y > 0. This implies that A < 0 and
p p YP

that A also becomes negative. In order to satisfy the transversality
YP

condition A (tY = 0 the sign of A must somewhere become positive.
VP r VP

This will happen when y = -0. Physically this means that the flight
P

direction of the pursuer, when A W 0, is in the opposite direction

of the line of sight between the pursuer 2nd evader at termination.

At this point the transversality condition A (t d R 0 still has not

been satisfied since A < 0. This implies continued application of
VP

the control C which causes further rotation of the flight path
Lp max

direction of the pursuer until A 0 0. If at this point Ap M 0,
VP

the pursuer will again be on a singular arc with y a 0. This meansp
that the pursuer has literally traveled a circular trajectory which

obviously cannot be an optimal pursuit trajectory.

If A > 0 when A = 0 the following control sequence must beYp Vp

considered

{C ,C )
Lp ax Lp min

To show that this cannot be an optimal control sequence, assume that

X < 0 and A > 0. The choice of control corresponding to A < 0
'VP yP. Yp

is C If X > 0 when X = O, A will b:ýcome positive
Lp max P P VP

resulting in switching to CLp C .Lp in* Since A YP O, yp must be
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less than 0. The choice of C will cause yP to decrease and Ap

will remain positive causing X to become more positive. Again the

pursuer will be traveling in a circle which physically cannot be an

optimal pursuit trajectory. By symmetry, (Cp C }cannot beL min' LPmax

an optimal control sequence.

It is concluded that in an optimal sequence of controls a singular

arc cannot be followed by a non-singular arc. Therefore if the pursuer

is on a singular arc, he remains on the singular arc.

Having eliminated (C CLi)' {CLp) in" CLp a nd the

transition from a singular to a non-singular arc as optimal control

sequences, there are three control sequences possible in an optimal

solution to this problem. These are

(C Le ma or CLp O' ; (CLp or C min ;0)Lp max Lpin' pmaz Lpmi

A physical interpretation of the use of these control sequences can bt

made by an analysis similar to that used to show that a switch from a

singular arc to a non-singular arc cannot be made. Consider *a initial

value of y < 0. This implies that
P

A - V sin (0 - y ) > 0/ VP P p

To satisfy the transversality condition A (t f) 0, A must be

negative for which the choice of C CL is the optimal control.

SThe control CL, . rotates the flight path direction of the pursuer

toward 0. When y -a , the pursuer switches to the singular control

C 0. For an initial value of y , 9, the optimal control is
Lp5 p

CLp ri and the flight path direction of the pursuer is again rotated

toward the direction 0. Similar arguments and statements caa be made

in regard to the optimal control sequences for the evader.
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The main point of this discussion is that the optimal solution to

this problem involves the employment of maximum or minimum control to

to rotate the velocity vector of each vehicle into a prescribed

direction after which a singular CLp a 0 or C e 0 is the optimal

control. The trajectories of the pursuer and evader are characterized

by a hard turn followed by a non-turning arc. The condition when both

aircraft are on singular arcs occurs when the flight path directions

of the two aircraft are colinear. This can be shown as follows.

On the singular arc, the state equations reduce to

x =V cos x sV cos O
p p e e

h V sin g h V sin g
P p e •

V =D C V D C
p p Tp e Te

yp =0 Ye.0

Integrating x and h yields
P p

o v dt

P Pt p

h (tf) uh (t) + sin O ifV dtP f P t P

and similarly for the evader

tf

x (ti) = x (t) + Cos 0 f V dt

th e (td he (t) si fV0dt
t

Dividing [h e(tf) h (t f by (xe (td) - x (t f) yields
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he (t) + sin 0jV dt - hP (t) - sin 0 f1V dt
0tan Q to t

xe (t).Cos 0.f1V dt - x (t)- cos Q t V dt

which is equivalent to

tan 0 - [fh (t) - hp (t)]/[xe (t) - x (t)0 (45)
0 P P

This implies that the line of sight direction between the vehicles is

a constant and equal to the terminal line of sight direction when both

vehicles are on singular arcs. This proveý that the flight path

directions of both aircraft are colinear under these conditions.

Because of the special conditions associated with the singular

arc solutions, initial conditions generally require the initial employ-

sent of maximum or minimum control. The closed-loop solution to a

general problem can be constructed as follows:
(1) For the evader, choose the control C or C

Le max Le si

that causes the evader to rotate its velocity vector

away from the pursuer. Holding this choice of control

constant, integrate a turning trajectory for the evader.

(2) For the pursuer, choose the control C or C
Lpmax LP min

that causes the pursuer to turn in the direction

4 necessary to achieve a tail chase condition. Holding

this choice of control constant, integrate a turning

trajectory for the pursuer.

(3) The pcints of tangency between the two trajectories

identify the switching points for each aircraft. The

slope of a line drawn between these two points identifies

the final line of sight direction 0. The geometry of

4S
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this solution is shown in Figure 7. If points of

tangency do not exist due to the ability of the evader

to turn tighter than the pursuer, the aircraft does not

switch from the turning controls to the singular

controls. The hard turn controls are then maintained

over the complete trajectory.

SWITCH POINT

F_4- FOR P

SWITCH POINT FOR E

Figure 7. Switching Point Geometry fer Zero Induced Drag Control Law

This is an open-loop solution. However, it can be provided on an

instantaneous and continuous basis thereby producing a closed-loop

strategy. It is interesting to note that even though the problem

46
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was presented as a fixed time problem, the same solution applies to

the minimum time intercept problem.

This problem was formulated neglecting gravitational iorces since

this is sufficient to prevent the synthesis of closed-loop controls.

However, it is felt that this problem and solution is of value since

it can be argued that gravity effects both vehicles almost equally

providing velocity differences are not too great. The most significant

assumption related to this model is the neglecting of induced drag.

Because of the distinctive two arc solution of this problem, a

correction for induced drag can very easily be introduced. This

correction consists of subtracting from the net thrust (Te and T p

an additional drag value corresponding to that normally induced by

the value of CLp max or CLe .a" This additional term would be

required only during the turning portion of the solution.

47



DS/NIC/67-l

VII. PURSUIT-EVASION DIFFERENTIAL GAME - LINEARIZED DRAG POLAR MODEL

In the previous chapter the zero-induced drag model was introduced.

It was pointed out how the drag due to lift or induced drag could be

taken into account in that solutior to the differential game problem.

In this chapter, the aircraft model is an improvement over the zero-

induced drag model in that drag due to lift is considered directly.

The difference between this model and the standard aircraft model is

the choice of a linearized drag polar instead of the parabolic drag

polar. If gravitational forces are neglected, a closed-loop control

law can be obtained for the pursuit-evasion differential game with the

linearized drag polar model. The vectogram for this model is shown in

Figure 8.

The purpose of this chapter is to solve the pursuit-evasion

differential game with the linearized drag polar aircraft model.

Statement of the Problem

IThe problem is to determine a saddle point of

2 21/2
j (t = R (t [(x -x X) + (h hflIp • P tatf

tf

subject to the state equations

-UV
p xp

h a V
P hp

(46)
Vxpa 9 [(CTp - k I CLp )cos yp - C sin y p

Vhp -D [(CTp - kp cLp I) n C cosY p

48



j

SS/MC/67-

IvI

I

C4.

II
I

/
I,

Figme S. Accslcratton Vectogra for the Linearzedz~ Drag Polar
Aircr-aft Model

eI

h""vh° (47)

D - [C~r k C 1% ) cos C. - sin,,,
•e 0 o•L Le •

where
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S~I
y P tan4I (V hP/V )P

y 3 tan1 (V /V)
a he x

and the subscripts p and e refer to the pursuer and evader, respec-

tively. The final time t-. as well as the initial values of the stateJ

variables are specified. D C ,D and C are constants defined
p T To

in Chapter IV. C and C are the controls and are constrained by
Le Lp

CLp in Lp CLp max

CLe min SLe < CLe max

The constants k and k are chosen so that the linearized drag polarp e

relationships given by

CDe CDOe 0k L CL

C C +-k IC l
Dp DOD p LP

represent the best linear approximation to the parabolic drag polar

relationships given in Chapter II. As in the last chapter, analysis

of this problem is made easier if the state variables x, h, V ,and
x

V are replaced by V and y whereh

V [V 2 + V 2]1/2 and y tan- )V/V)x h "hx

The resulting state equations are

X =V Cos Y
P p p

h -V sin y
P P p (48)

V D [C -k IC II
p p Tp Lp

so

-- -- • S
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1). C /V
p pLPpp

V Cos y

V 0 Vsin y

S 

(49)

y e To CJ~

1:Aich r'eplace Eqs (46) and (47).[ Necessary Conditions

Applyving necessarY conditions fror a saddle point solution. the
Hamiltonian is

Hin V CosT *A V+iy * vD ~ IXee he Ve snYa- Ve D0Te k0 L

Te o * Le A V Cos y +a V sin yxp p p hp p
VA D [ C TOk p C~ IJ.Y D pC P/V

*The costate equations are

A 0

a0

(SO)
Cos COy A i~inT y+A D CL/V2

A V (A siny -A Cosy)YP p xp p hp p

A 0
xe

S.1
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he
Sc~i~2 (SO)

Ave C -X C Cos Ye A he s e D A.y e D CL /

A y V (AXe siny e cshe y)

lThe transversality conditions yield

Axe (t) = Axp (tf) =(xe -x)IRIt t

A (t "- (-tA (he" h )/R I
Ahe d hp C' e p tatf

AVe (tf) = 0
(S2)

AYe (t)f 0

A (t)=0Vp f

A (td) 0

It is necessary that the Hamiltonian be minimized with respect

to C and maximized with respect to C subject to the constraintsLp Le

on C and C . To determine the C that. minimizes H, consider the
Lp Le Lp

terms in H that explicitly contain CLp. Defining these terms as H I
• A=-A D k I C + A D Cp/V (53)

p Vp p p Lp Yp p Lp p

Tf C > 0, Eq (53) can be written as
Lp

H (-A k D +A D/VJC
p Vp p p Yp p p Lp

and for C < 0, Eq (53) becomesi• am•Lp

l = [4 k D + A D /V C
p VP P P YP p p Lp

S2
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Defining

14 . A k D A1 D /VJ(4

and

N (A k D + I D /VJ(S
p V p P • ypp• pI+I

Eq (SS) can be written as

p CLp C Lp O

L C Mp (56)

To determine the C that minimizes H and thus minim.zes H, theLP p
following figure is convenient.

• I II I iII I ]
CL, ;p CLIP

l + I I
I "

S. . .. . I M ; ,,o 0

ql|~~M .0• M*+- , ,0+

M 0

-'- .,•Figure 9. Diagram Showing vs. C ,ill • LP

• l • ,i S 3



The minimum of 9 with respect to C is
p Lp

mainf{0,H"C .1 ' Cp )
,p Lp min' p Lpmax

.f the minimum of if is M C the minimizing control is C
p t p Lp min' Lp min

If the minimum ff is H CLP , the minimizing control is C
p p LLp max

If the minimum i! is equal to zero, the minimizing control C is eitherP L

zer-o or is a singular control.

To determine the C that maximizes H define

is" De k I ! + D C/V
e ae0  Lu ye e Lea

Defining

@ -xV. %, X + x D e/Vol (S7)

e a • ye (

and

M - Ve De e y+ Ye DelVe (S8)

Scan be written as

eL
14 C" C <0

SCLe Le
ii- (59)

The maximum f with respect to C is
e Le

mex {0,M} C ,MX C ran
e Le max e Lemin

If the maximum H-e is M e CLe max' the maximizing control is CLe max*

If the maximum H e is MC CLe min' the maximizing control is C Le min*

If the maximum R is zero, the maximizing control is either zero or

is a singular control.

S4
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Problem Solution

It is shown in Appendix 5, that singular controls cannot occur

in this problem and that an optimal solution is one of the control

sequences

(CJ• a" or C O) (C or C (0)
LPL ax min' Lp max Lp isin

The switching point for the first sequence is determined by integrating

backwards in time from the terminal surface the state and costate

differential equations assuming the controi C Lp a0

Along the C = 0 arc, the state equations are
•m Lp

x V cos yi•P P P

ah V sin y
P p P (60)

V D C
p p T O

y =0

and the costate equations are

A 0~Xhp

S• 0
hp

hp a PCOS y -Ah sin y (61

-.V (A siny -A Cos y)yp ' P Xp hp p

*• From transversality conditions and Eqs (61)

- (t) A (t -- cosO
"Xp Xp

(62)Ab (t) A (t) - sin 0
5 hhp

Si• ss
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where 0 is the angle measured between a line from the pursuer to the

evader and the horizontal at t =t f. Substituting Eqs (62) into (61)

gives

A =0xp

Ahp 0

(63)
- cos ( -

= V sin (0- Y),,•p p Yp

Integrating V yields
P

Vp (t) = Vp (tf) -Dp C (T f t) (64)

Integrating AVp yields

Alp (t) = -cos (9 - p) (t t) (65)
VP p f

where A (t ) = 0 from transversality conditions.

Integrating A yields
YP

A (t) - A (t) =sin (0 ) iV (t) dtY p f Ypp
(66)

V(t

sin (0 Yp) P V (t)/(D C dV
Yp(t) p p Tp

- sin (0 - yp) {V 2 (tf) - V 2 (t))/(2Dp C T)p 2  f pp Pp

where A (tf) = 0 from transversality conditions. Substituting Eq
TP

(64) into (66),

i (t) =-V (t) sin (G-p) (tf t) (I + (67)
Tp p

56



pT' T IPM

Necessary conditions to be on a CL 0 arc are

N u[APk . /V 0 (68)

or

N V k 4 V 0(69)

Su~bstituting Eqs (65) end (67) into (68) and (69) yields

tan (0 - y ) -c k /[l+D pC Tp(t f t)/(2V p

tan (0 - y P) > - k p/[l + D pC Tp(t ft)/(2V J

[ which can be combined to giveF

tan (0 - y < k k/[I + D C ~(tf- t)(2V) (70)

The solution to a general problem is similar to the solution

obtained in the last chapter in that it is characterized by a hard turn

with either C Lpmxor C LPmnas the control followed by a non-turning

arc or dash. The principle diff~erence between this solution and that

of Chapter VI, is the condition under which switching occurs. In the

solution to this problem switching to the non-turning arc occurs for

the pursuer when

tan ( - y) I k /[I.D C (t .t /(2V) (71)

and for the evader whenp

Itan (0 - y I kI0[1l+.D C e,(t f t es)/(2V) (72)

where t and t are the switching times for the pursuer *nd evader

respectively, and 0 Milst satisfy
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tan O (h (ts " p ps +Vhe t (t at )s

2
Vhp ps) (f tps) + CTe sin Ye (tes) (tf tes) /2

-D C sin y (t- t ps )/)/{xe (tes) (73)Pp C p P ps) f 52 *O

p Ps xe s (t es xp ps (if ps
S2SD aCT cos y& (tes)(tf- a)2/

-D C cos y (t) - t 22)I
p Tp p ps f ps 2

To show this, the state equations given by Eqs (46) and (47) evaluated

for C and C equal to zero are
Lp Le

x 2V x =V
p xp e xe

h mV h V
P hp e he

V DP C cos y V u D C cosyVxp Pp p xe •oTe

V =D C sin y D CD sin y
hp p Tp p he Teo

Integrating V and V and remembering that y and y are constant
xp xe p a

when C and C are equal to zero yields
Lp Le

V (t) a V (t + D C cos y (t )(t-t )
Xp XP PS pTP p ps ps

and

Vxe (t) = Vxe (tes + D CTe cos Ye (t s) (t-t s)

Integrating these equations and combining the results,

x(t)- x (t) x (t - x (tPS) + (t)(t - t - (74)
e p e (es p xe es) es)

58
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V (t )s(t- ).D;+00C ToCos* 0 t )s(t at
h (t h (tS) - e (e h Ost 2) -

- pC cosy (t p P(t -hts

• The following equation is similarly obtained fo:' the h cooponents of

: ~the state equation•.

0 P hhe p ps he te t e (75)

22
S-V (tsi )(t-tps) D C siny /2 )(t- )/

hp TO ~ e 0 e: ~- C s inyp t:t )(t-t tp)I

Dividing Eq (7S) by (74) and evaluating at t t f yields

tan 0 th a (tes) - h (tps) + Vhe (t s) (tf - tl )
- hp (tp) (t f - tps) D D C To sin Y5 (ts) (tpf p hes) 2

22

- C sin y (ts) (t -t 2}) xe (te)
- pTO p ps f ps 2 0 ea

p (tpsa xe (tes (tf -es Xp (tps) (tf ps

2
+De C Cos Y (t (t -t )2/

pTo pa f ps 2- Up C To Cos T p (t ps) (t£ f t ps)21

Because the optimal controls for this problem solution correspond to

either a hard turn or a straight dash and because the switching point

can be defined in terms of time to go and the state variables, a II
closed-loop solution to a general problem can be constructed as

follows: '
(1) For the evader, choose the control C or C

Le m=~ Le sin

s9
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that causes the evader to rotate its velocity vector

away from the pursuer. Holding this choice of control

constant, integrate a turning trajectory for the evader.

(i) For the pursuer. choose the controlC orC or

that causes the pursuer to turn in the direction

necessary to achieve a tail chase condition. Holding

this choice of control constant integrate a turning

trajectory for the pursuer.

(3) The switching points (if they exist) for the pursuer

and evader must lie on these turning trajectories and

must satisfy Eqs (71) and (72). A numerical search

is required to find the direction 0 and the pair of

points on the two turning trajectories that satisfy

Eqs (71), (72), and (73). If these switching points

do not exist due to the ability of the evader to turn

tighter than the pursuer, the aircraft will not switch

from the turning controls to the ;ero controls and the

hard turn controls will be maintained over the complete

trajectory. The geometry of this solution is shown

in Figure 10.

As in the previous chapter, this solution is an open-loop solution.

However, since it can be provided on a continuous basis, it constitutes

a closed-loop strategy or control law.

The importance of this differential game problem solution is that

drag due to lift (induced drag) wzs included in the aircraft model.

60
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[ --- SWITCH PUNT FOR P

E (e- (e-

SWITTCH POINT FOR E

HI.

Figure 10. Switching Point Geometry for Linearized Drag Polar
Control Law
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VIII. MODEL COMPARISON

The preccding four chapters were concerned with th¢,solution to a

pursuit--evasion differential game between two aircraft. The difference

in these chapters was in the model chosen to represent the aircraft.

The purpose of this chapter is to apply the results obtained in

Chapters IV thru VII to the same game situation and to compare the i
different solutions. In doing this there are two important corsidera-

tions. The first is the payoff or value of the game which is the

numerical measure that reflects the relative capabilities of the two

aircraft. The capability to determine this numerical measure through

the use of simplified aircraft models would be a significant design

tool. The second consideration is the correspondence of the resulting

aircraft trajectories. The capability to determine optimal or near

optimal trajectories by using closed-loop control laws developed

through the use of simplified models is important in the area of

aircraft-tactics. -ro'accomplish'fthis comparison, two problems are

considered. These are the problems for which open-loop solutions were

presented in Chapter IV. In Chapter IV, these problems were defined

by specifying final values of the state vector. It was pointed out

that the solutions to these problems represented open-loop solutions

for the differential game problems where the specified initial state

conditions x (t ) corresponded to some point x (t) on these trajectori.
0

For purposes of this chapter, these problems are specified in terms of

initial values of the state vector.

Problem 1

The initial conditions for this problem are

62



i ] •-DS/14-/6?- 1

"Tx (t) = 19522 feet x (t) l10893 feet
0 P o

"h (t) 8 27671 feet h (t) - 39984 feet
* 0 p 0

V (to) S 8S7 ft/sec V (to) a 1137 ft/sec
Xe 0 XP o

V (t) ss3 ft/sec V (to) " 508 ft/sec

he 0 bp 0I

The choice of other necessary data is
2 2

D = 122 ft/sec D a 192 ft/-c2
o p

CTo a .06 CTp a .04

k " S k • S
• p

The final -,lme is 20 seconds and the admissible controls are given by

ce Il Lp

The standard model open-loop solution to this problem was shown in

Figure 4. In this problem the pursuer is initially above and behind

the evader. The pursuer has approximately a 200 ft/sec speed advantage

over the evader and also has a greater acceleration capability by

virtue of the choice of D and D
p •

Static Model Solution

In Chapter V, a procedure was presented that would enable the

static model solution to be used as a closed-loop control law. The

procedure is to solve the static problem at each integration step as

if the flight path direction of both aircraft is to remain fixed. The

optimal controls for the solution to the static problem are then applied

to the standard model dynamics. Applying this control law to Problem I

63
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yields the solution shown in Figure 11. For comparative purposes, the

standard model solution is also shown. The payoff or value of the game

is 10055 feet.

Zero Induced Drag Model Solution

In Chapter VI, a zero induced drag model was presented. By

assuming zero induced drag and neglecting gravitational forces, an

optimal closed-loep control law was obtained. A method for correcting

for induced drag was also discussed. For purposes of this chapter,

gravity and the induced drag correction are included. Applying the

control law obtained for the zero induced drag model to Problem 1,

yields the solution in Figure 12. The value of the game is 10932 feet.

Linearized Drag Polar Nadel Solution

In Chapter VII, an optimal closed-loop solution was obtained for

a linearized drag polar model with gravity neglected. For purposes of

this chapter, gravity is included. Application of the linearized drag

volar model control law to Problem 1, yields the solution shown in

Figure 13. The value of the game is 11110 feet.

Problem 2

The initial conditions for this problem are

x (t) - 15036 feet x (t) m9944 feet
e 0 p 0

h (t) -23131 feet h (t) 519298 feet
e o p o

V (t) =1246 ft/sec V (t) - 1403 ft/secxe oxp 0

V (to) = -72 ft/sec V (t) -361 ft/sec
he Vhp 0 31f/e
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o - Standard Model Solution

A - Static Model Solution

• Pursuer

rEvader

II

"•.00 1O0.-0 ISO."O :O.ltOO OO OO

X - Range Feet

Figure 11. Static Model Solution -Problem I
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o -Standard Model Solution

SA -Zero Induced Drag Model
S~Solution

o Pursuer

-Evader
C!

•. ,

-tb.00 10.00 tio 2060.00 .2S.00 0.0s,00

X - Range Feet :•

Figure 12. Zero InducedI Drag Model Solution -Problem I •

4)4
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o - Standard Model Solution

a - Linearized Drag Polar
* Model Solution

C; a!a
0.

aJ I, 0 urue

fV Evader
aa I
0

a'Or..0o .2250.00 36o.00 3.Ccaa

X - Range Feet

Figure 13. Linearized Drag Polar Model Solution - Problem I
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The choice of other necessarv data is

D = 160 ft/soc
2  D a 175 ft/sec

2

e p

CTe = .06 CTp = .04

k S.5 k =.S
e p

The final time is 20 seconds and the admissible controls are given by

!L < I_ ICL I .l

The pursuing aircraft is initially below and behind the evading aircraft.

Although the pursuer has an initial velocity advantage of approximately

200 ft/sec., his acceleration advantage over the evader is very small.

The standard model open-loop solution to this problem was shown in

Figure 5.

Applying the static model control law to this problem yields the

solution shown in Figure 14. The value of the game is 5863 feet.

The zero induced drag model solution without the induced drag

correction is shown in Figure 15. In this solution the "tail chase"

situation is never achieved. Although the pursuer has a lift advantage

over ýhe evader, the turn rate of the pursuer is limited by his

velocity, V , since turn rate is inversely proportional to velocity.
p

When the induced drag correction is included, the pursuer's velocity

is maintained sufficiently low to allow achievement of the tail chase

solution. This solution is shown in Figure 16. The value of the game

for these solutions is 5440 feet with the induced drag correction and

4302 feet without.

Three linearized drag polar model solutions are shown. The

difference between these solutions is in the choice of the induced drag
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iiVV

o - Standard Model Solution

A - Static Model Solution

di9L

Pursuer

'.10',

X - Rang. Feet

Figure 14. Static Model Solution - Problem 2
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e-4

! 0 -,

0

0

0

O-

"•O0.o L~o.0o tS;o.oo 200.00 250.00 300.00 350.00

X - Range Feet. i

Figure 15. Zero Induced Drag.Model Solution without the Induced r

flrag Correction - Problem 2
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o - Standard Model Solution

- Zero Induced Drag Model
. ' Solution

rsa

i u"

aM,--

*m I ':

X - ageFe

Drag Corcin rbe

i71

k0

i"f

+ X - Range Feet

Figur'e 16. Zero Induced Drag Model Solution with the Induced

Drag Correction - Problem 2
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coefficient (k). For the solution shown in Figure 17, the value of k

and k is the same as the parabolic drag polar coefficient used in the
p

standard model (k a k S .5). Fer the solution shown in Figure 18, kSP e P

and ke are taken to be .4 and in Figure 19, k and k are .33. The

lower coefficients correspond to a lesser value of induced drag. The

variations in these solutions give an indication of the importance of 1
how induced drag is accounted for in the aircraft model. The value of

"the gaie for these solutions is

5798 feet for k = k a.S

5412 feet for k a k a .4p a

540 feet for k a k a .33

Discussion

For convenience in comparing the results obtained in this chapter,

the payorts or game values for both problems are summarized. They are A
Problem 1

Model Payoff

Standard 9897 feet

Static lOOSS feet

Zero Induced Drag 10932 feet

Linearized [rag Polar 11110 feet

Problem 2

Model Payoff

Standard 5831 feet

Static 5863 feet
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o - Standard Model Solution
A Linearized Drag Polar.

i Model Solution

- o o]Evader

A

. .g

•. Pursuer

<I

I, • . .
100

X - Range Feet
figure 17. Linearized Drag Polar Model Solution -Problem 2

: (kp ke .5)
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o - StandarG Model Solution

aA - Linearized Drag Polar ModelC! Solution

I :C
Ced

a c

ca

C Pursuer

• ""-

;'0.00 100.00 150.00 200.00 250.00 26O.00 260.00

X - Range Foet

Figure 18. Linearized Drag Polar Model Solution - Problem 2 4

(k -k -. 4)
p e
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i .,.

o - Standard Model Solution

-A Linearized Drag Polar
Model Solution

S~Evader

.' Pursuer

0.0 to.0 IS0'" 200•' '°.00.' 25*0 10'.0 SUG.

/ X - Range Feet

Figure 19. Linearized Drag Polar Model Solution - Problem 2
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Zero Induced Drag

with correction S440 feet

withoit correction 4302 feet

Linearized Drag Polar

k =k .S S798 feet

k ~k =.4 S412 foot

k ak - .33 5140 feet

These results indicate that a numerical measure reflecting the relative

capability between two aircraft can be determined by solving differen-

tial games with simplified models. All of t~he solutions to Problem 1I

result in trajectories that exhibit a i'istinct turning arc followed by

a fairly straight approach to termination. The standard aircraft model

solution to Problem 2 does not exhibit this characteristic as distinctly

because of the effect of gravity. It is intcrest~.ng to note that the

line of sight angle~ (0) between the pursuer and evader at termiziation

is nominally independent of the model that is used.

These observations are used in the next chapter to synthesize

a feedback control law for the non-linear standard aircraft model.

JA.,
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IX. CONTROL LAW SYNTHEIS

In Chapters V, VI, and VII, optimal closed-loop solutions to

special types of pursuit-evasion differential game problems were

presented. In order to obtain these solutions various simplifications

were made to the standard aircraft model. In Chapter VIII, the

simplified model solutions were compred with standard model solutions.

The purpose of this chapter is to syntnesize a closed-loop control law

for the standard aircraft model utilizing information from the results

of Chapters V thru VIII.

Control Law Synthesis

The most important parameter in the solutions of the simplified

aircraft problems is 0, the line of sight angle between the two

aircraft at termination. Once 0 is determined, the solution to those

problems is known. In the static model problem the optimal controls

are

C4 tan (0 -g)(2kp)

and

C• ,tan (0- )/(2k)

for

SCL cC
£ CLo min Lp Lp max

V c CLa < CLe
Le m•n

Geometric significance can be given to this choice of controls

since the tangent to the acceleration vectogran of the static model at

* the point corresponding to C is perpemdicular to the final line of|l|P
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sight direction 0. To show this the x and h coordinates corresponding

to this point on the vectogram are
*2 *

x 0 ((C k cos C -C sin (76)
p Tp pLP Lp

*2
h •D [(C -k C sin (+ cos i (77)

p Tp p...p Lp
*

Differentiating Fqs (76) and (77) with respect to CLp,

dx/dCLp • p [- 2kp C cos & - sin Q (78)

and

dh/dCLp a D p -2kp C sin C + cos 1 (79)

Combining Eqs (78) and (79),

dh/dx [-2k sin C+cos C]/[- 2k C cosC-siut€]p Lp p CLp

- .(80)
= [- 2k CLp tan + lI/[- 2k CL -tan]J

ppwith Cp tan (0 &)€/(2k )Eq (80) becomes
LP P

dh/dx -[-tan (0- t) tan • + 11/[- tan (0-C) -tan C)
-- l/tan 0

This proves that the tangent to the vectogram at the point correspond-

ing to CLp is perpendicular to 9. Figure 20 shows that if a value of

CL? greater or less than C is chosen, a lower component of accelera-
LP Lp

tion is applied along the 0 direction. This geometrically represents

the pursuer's half of the saddle point solution. The optimal control

for this problem can be defined as that admissible control which

applies the largest acceleration compent in the 0 direction.

In the zero induced drag model problem the optimal solution is

to employ a saturated control until the flight path direction of the

78



DS/MC/67-1

-10~

Figure 20. Static Model Control Selection Geometry

vehicles are equal to 0. The choice of the saturated control (C )
L max)

applies the largest acceleration component possible in the 0 direction

as can be seen in Figure 21. When the flight path directions of the

vehicles are in the 9 direction all points on the acceleration vecto-

* gramt are perpendicular to the 9 direction. At this time any choice

of control other than the singular control CLps a O.will cause the

aircraft to turn away from the desired direction of flight.

In the linearized drag polar model problem the optimal solution

involves the employment of saturated controls until

J tan (0- y k /[I +D C (t t)l(l2V 1p p p Tp f p

is satisfied for the pursuer and

tan (0 - ye < ke/[l * D CTo (t- t)/(ZV )
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is satisfied for the evader.

Figure 21. Zero Induced Drag Model Control Selection Geometry

When these inequalities are satisfied any gains made by continued

application of the saturated control are more than Qffset by increased

drag penalties.

In the standard aircraft model problem the optimal controls are

C ,tan (B -y )/(2k)
LP p p P

and

C ,tan ( -Y )/(2ke)
I.e e e

for

C cC (C
Lp min Lp -Lp max

C Le min CLe C< ma
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SV The difference between this problem and th.; static problem is that 0p"

y p, Be, and ye are not constants. The analysis of the optimal controls

for the static model does apply on an instantaneous basis since C and
Lp

C are the controls that apply thu largest acceleration component along
Le

the b and B directions respectively, This suggests a method of
p a

synthesizing a closed-loop control law for the standard aircraft

model by approximaiing instantaneous values of B and Fe. From trans-
p

versality conditions for the standard model problem

0 (Y0 -, c0 -

It therefore seems reasonable to approximate 0 and B by 0. In

Problem 1 of the previous chapter, it is observed that the solutions

for-all the models yield vaiues of 0 that are relatively close. In

Problem 2, all solutions yield reasonably close values of 0, excepting

the zero induced drag solution without the induced drag correction.

For purposes of synthesizing a feedback strategy that is ri "onsive to

any move of the opponent, 0 must be determined from a dynamic rather

than a static model.

The following algorithm is proposed as a closed-loop control law

for application with the standard aircraft model. At each integration

step

1. Determine 0 using the linearized drag polar model

solution.

2. Determine the instantaneous values of control from

C -tan (0 - y )/(2k)
Lp P P

and

CLe tan (0- ye)/(2k)
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This control law uses the dynamics of the linearized drag polar 4W

model al the determination of control offered by the static model.

The results of the previous chapter show that the payoff resulting

from the static model solutions is closest to the payoff of the

standard model in both problems.

For this control law to be "reasonable", the solution to a differ-

ential game problem in which the pursuer and evader both employ this

control law should have a payoff relatively close to the value of the

game. To show this, Problem7 1 and 2 defined in the previous chapter

are ssived. The standard model dynamics are used and the pursuer and

n.ader both employ the closed-loop control law synthesized in this

chapter. The solution for Problem I is shown in Figure 22 and the

solution for Problem 2 is shown in Figure 23. The numerical results

are

Problem I

Standard Model Extremals - Game Value - 9897 feet

Standard Model Using
Synthesized Control Law - Payoff - 10147 fet.L

Problem 2

Standard Model Extremals - Game Value - 5831 feet

Standard Model Using
Synthesized Control Law - Payoff - 6018 feet

It is seen that the application of the synthesized control law does

a reasonable job of duplicating the optimal saddle point game solution,

implying that the payoff is reasonably close to the value of the game *

and the trajectories are also close. In order to determine the

optimality of this control law, it musL be tested against the best
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Io -Standard Model Solution

3 A Synthesized Control Law

Solution

•Ow

Cal

,. a

'i! Ut

~I

Figure~~ ~ ~ 22, Standard Model SolutionUsnthSyheid
S! • -CoytthlsiLed -ontrol A. p0olution

' a

oA

a Prse
bt
Cd

0

a m

O-

X o Range Feet

Figure 22, Stand..d Model Solution Using the Synthesized -

C0ntrol Law - Problem A
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o - Standard Model Solution
0
c3 •- Synthesized Control LawSolution

S• • Evader

a c

01

S~Pursuer

0

0

16s.00 160.00 tiO.o0 2oo.0o 25.00~o 36.oo 3o.o00

•! X - Range Feet

Srigure 23. Standard Mlodel Solution Using the Synthesized

Control Law - Problem
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I$
oPen-loop strategy of the opposing player. Suppose the evader plays
optimally against the pursuer who employs this control law and the
resulting payoff is equal to the game value plus a distance n. This
control law is then said to be n optimal against any strategy for the

evader.

[ Synthesized Control Law Optimality

To determine the optimality of this control law, a computer
program was developed that optimizes the cvader's trajectory against
a pursuer employing this synthesized control law. A parameter optimi-
zation problem was formulated by considering the evader's control at[• each integration time step as an independent parameter.

C (t )u i to t/at
Le i i

The parameters a, are then adjusted to maximize the distance
between the pursuer and evader at termination (t a tf). This parameter
adjustment was accomplished using the Random Ray Search Algorithm,
contained in a program entitled, "Automated Engineering and Scieutific
Optimization Program (AESOP)", (Ref [7]). This procedure was applied
to both problems considered in the preceding chapter. The solutions
are shown in Figure 24 and Figure 25. The saddle point solutions are
also shown for comparative purposes.

By employing the best open-loop strategy, the evader is able to
obtain a payoff of 10541 feet, which represents a six and one-half
percent increase over the saddle point game value in Problem 1. In
the second problem, the evader is able to obtain a payoff of 6319 feet
representing an eight and four-tenths percent increase over the saddle
point game value. It must be remembered that these payoffs represent

8SIjj .,s



DS/MC/67- 1

II

o - Standard Model Solution

A - Optimal Open-Loop Evader
C.1 vs. Pursuer Using Synthesized
9 •Control Law
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.2 Pursuer
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4w
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9 in
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the best that the evader can do against the synthesized control law

and that there is no closed-loop control law available that ailows the

evader to achieve these payoffs.

8i

I
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V X. CONCLUSIONS

34, Closed-loop solutions to four pursuit-evasion differential games

between two aOrcraft have been presented. For the three simplifted

aircraft models considered, optimal closea-loop control laws sto

found. For the standard aircraft model, a "near" or approximate

optimal closed-loop control law is synthesized. The optimality of

this control law is investigated and found to be quite good.

To be of practical value, the solutiin to a differential game

problem must provide closed-loop control laws. The ability to determine

closed-loop control laws through modeling has been demonstrated in

this study. It is believed that the same approach can and should be

applied to other aspects of the combat differential game with equally

fruitful results anticipated.

It is hoped that the approach taken in this investigation will

stimulate an interest in the investigation of "practical" differential

game problems.
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APPE.NI)IX A: SUFFICIENT CONDITIONS FOR A LOCAL SADDLE POINT

fhe purpose of this appendix is to sketch the derivation of

,:"Jic1,.nt *,onditions for a local saddle point solution to the differ-

e',it'al ,ame problem considered in this disserration. The derivation

,• :,i': to that in Ref [21, which is analogous to the approach

k tfor the optimal control problem in Ref [4].

i~e,'t ial Game Problem

'lhe following differential game problem is considered. Determine

I. addle point of

t

0

q-:,nject tO

x=f (X, . , t) x(t) 0- DS. ... 0 -e

x i.; ,n n-vector. The terminal surface is given by

(X (tf), t f T t f = 0

- a sŽcifticd fixed time implying that the game is of finite

io•1. Ce functions 6, f, and L are of class C2 with respect to

"" .. ""orts. The admissible controls u (t) and v (t) are subject

U1. < I U•n, n max

V V < V

m in -" max

t:rQ piecO•:i.C continuous on [to, t ].
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Necessary Conditions

Adjoining the differential constraints to the payoff J with a

Lagrange multiplier A (t), Eq (A-I) may be written as

J (x I x(t ) t f + I (L(x, u, v, t).A (f- x)) dt (A-2)

to

The imiltonian, H is defined by
H (t, x9, ?.., u, v) aI f + L

and it is assumed that for the class of problems being considered the

Hamiltonian is separable. This means that H can be separated into

two functions, one of which is independent of u and the other independ-

ent of v. Integrating the last term on the right side of Eq (A-2) by

parts, yields

J t),t T xT(t xta., ~ cx( f. s) - tf t) x (tf) 1, 0fto 0 %

tf T (A-3)
I {H xdt
t

The application of control variations Zu and 6v results in a variation

6x in the state vector and a change in J. The change in J, to second

order, due to these variations may be written as

(4 T I + T
x tf T(A AS)

2 'tf 'T ____+ 1/2 II 6x I + I * [(H +* ) Ax H 6u
-x tf to -- u(A-4)

tf T ax
+ H ,,v dt + 1/2 1 [Ax au 6uv dt

vto -- vu

where
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"H H i
xx xu xv

If H if H
-- Ux uu Uv

H H HSvx- vu vv

and

I x 2 denotes the quadratic form SxT * dx
xx

6x is determined from
x =f Sx + f Su + f 6v x (t) 0 (A-5)

X -u -V 0 -

"-T
Choosing =X -H and X (t) It Eq (A-4) can be written as

ff

2
S1/2 L+ [H 6u + H v] dtU

xx o ~ ~(A-6) -- i

t f T vX
+-1/2 [Lx 6u6v]H dt

to 6u

For(u , v ) to provide a saddle point of J, (u v )-must satisfy

J (u ,v 6v) (u, v )J u 6u, v) (A-7)

for admissible variations 6u and 6v.

For Eq (A-7) to hold for any admissible 6u and 6v, it is

necessary from first order considerations of IJ that

(i) H - o H o0
u v (A-8)

(ii) H > 0 H < 0

uu vv

for u u < u and v V <V If the minimizing control
min max min max

94
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u and the maximizing control v are on the boundaries of their

admissible sets it is necessary that

iH du >O and H 6v 0 (,-9)
U V

Sufficient Conditions-
* I

For non-interior u and v, H 6u > 0 and Hy Sv < 0 where du and

6v satisfy

um in - U + a6u % U

(A-10)v min I- .v + _v < a
mm-- ma

are sufficient to insure that J (u , v ) is at a saddle point since the

first order terms in Eq (A-6) dominate for small 6u and 6v.

For interior u and v the necessary conditions, Eqs (A-8),

cause the first order terms in Eq (A-6) to vanish and the variation

in J is given by

I ]
+ -/2 L S'u SY) dt

* t f t 01u]

Ldv

with x determined from

x -f ax + f au f v 6x (t) 0 (A-12)

and all functions are evaluated along the extremal path.

The accessory minimax problem is to determine a saddle point of
2

6 J given by Eq (A-11) subject to the differential constraint, Eq

(A-12). For this problem the minimizing control is Su and the

maximizing control is iv and they must satisfy the constraints given

by Eqs (A-o1).
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Assuming that the strengthened Legendre-Clobsch conditions

2 2 2 i/)2

a H/Bu 2> 0 2/3v < 0

are satisfied and using the results of Ref [4], Eqs (A-1I) and (A-12)

can be written as

2 112 tf

1/ 11 aI •x (t f [ I x (t) 112
t 9o

+ u2 R - dv2 RI dt
p 0

and

dx F 6x + G Su G 4 6Vx (t)- (A-14)
-- - p -e0 -

where

- t tf

S- H H 1 H -H H H
xx Xu u X XV xV vY

R iHi
p uIn

e VY

F f f H H f H H
- -Ux u uu ux --V w vx

G -f
p U

G =f
e V

and all functioas are evaluated along the extremal path. The solution

to this accessory minimax problem, (Ref [21), yields the optimal

strategies
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t cT

6v* uR G ZT t) ax

where (tf t) is the syunetric matrix solution of the matrix Riccati

equation

t • T x E( -1 G T

-0- p

wheoe

S(tt, t) y S (A-l7)

If Eq (A-16) has a solution defined on [to, tf satisfying Eq (A-I17,

then the only solution of Eqs (A-16) satisfying Eq (A-17) is

6u (t) -0 and 6v (t) - 0

Therefore the saddle point solution of the accessory niniuax problem

is at
* 2

(6u 0. 6v .0) and 6J (Su ,6v 0

since 6x (t) a 0. This implies that
2

8 J (Su 0, 6v o0).0

sad

6 2J (u -0, v 0) < 0

from which it is dedced that

J (u , v 6v) ) ( vi J (u 6u, v)
0 0

which demonstrates that (u , v) chosen to satisfy the necessary

conditions is a local saddle point for the original differential game

problem.
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Conclusions

When the controls u and v are non-interior, the necessary

conditions given by Eq (A-9) with the inequalities holding are

sufficient for (u, v) to provide a saddle point of J.
s0 *

When u and v are interior controls or no,'-interior controls

w:ith II and 1. equal to zero, the following cordit'o's are sufficient
u v
* *

for (u , v ) to provide a saddle point for the differcv'tial game

considered.

(1) The strengthened Legendre-Clebsch conditions

It > 0 II 0U11 1

(2) The existence of a solution to the matrix Riccati

equation, Eq (A-16), on the interval (to, t ). In
0' f

Ref (21, the cond.tion when the solution to the matrix

Riccati equation becomes unbounded is related to the

existence of a conjugate point on the extremal path.

These sufficiency conditions do not apply to singular arc

solutions.
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APPENDIX B: DETERiMINATION OF ALLOWABLE CONTROL SEQUENCES FOR THE

DIFFERENTIAL GAME PROBLE4 WITH THE LINEARIZED DRAG
POLAR MO0DEL

The irurpose of this appendix is to determine the allowable

sequences of controls in an optimal solution to the differential game

problem using the linearized drag polar model which is presented in

Chapter V11.

The state and costate equations for this model are repeated for

convenience. The state equations, Eqs (48) and (49) are

x V Cosy
P p p

h= V sin y

p P P

p P TLp II

x V Cos y

i - V 4: sin Y (B-2)

V D [C -k ICe Te a Le

Y= D C /V
a * Le a

The costate equations, Eqs (SO) and (51) with Eqs (62) are

1 =0

Xl=0
hp



AP a COS( Y py+ A YD pC LP/V 2
; Vp "cs(- p) Yp p D Lp~p

Ap Vp sin (0 - )

A .0
xe

•he *

S S COS ( y) A D C /Ve 2  (8-4)
Ve e Ye e Le e

A ye Ve sin (0 - ye)

In Chapter VII, the controls that minimize the Hamiltonian are

determined to be C max' C C p 0, or a singular control
Lpma Lp min' LP 

IC For the choice C to be optimalLps. Lp max

M D [ k +A /V 0
p p Vp p TI' p

and for C to be optimal
Lp mini

M D [A k+A /V ]> 0 (B-6)P P P p.•

For C * 0 to be optimal, M1 must be positive or M must beLp p p
negative. The singular control C occurs if M or M is zero

Lpsp p
over a finite time interval.

Allowable Control Sequences

In determining allowable sequences of controls, the physical

aspect of the problem must be considered. It is pointed out in
Chapter VII, that there is a direction 0 associated with the solution

to this problem and that this direction is the line of sight direction

410
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V between the two aircraft at t • tf, when they both play optimally.

Since this 0 direction exists for optimal play, it is physically

logical to assume that any control that causes either aircraft to

turn away from this direction is non-optimal. Conversely, any non-

zero control to be optimal must rotate y and y toward the 0 direc-
p

tion.

Consider initial conditions such that the minimizing control for

the pursuer is initially CLp min For these initial conditions

M *D f. k *A /VJ> 0
P P 11p P Yp p

from Eq (5-6). For CLp min to be an optimal control, the physical

aspects of the problem require (0 - y ) to be negative. The allowable
p

sequences of controls from these initial conditions can be determined

by investigating the behavior of the switching function M ". Figure
p

26,. shows a switching function trajectory corresponding to the control

sequence (CL mi' CL 0, Cn Min}. p (tf equals zero since

A (td and AYP (tf) are zero from transversality conditions, Eqs

(S2). To show that this seqttence is not an optimal sequence, the

derivative of N " is
p

* * 2
Mp Dp '1 P A p /Vpp A TP VpP

7P
becomes

2
= aD [k cos (0 - y) sirs ( - y) A D C /V (B-8)
pp p p p Y p TOpp

It is seen in Figure 26, that to end on a CLi arc, (tf

must be negative. This implies from Eq (B-8) that
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M P

Figure 26. Switching Function Trajectory for the Control Sequence
{CLp rain' CLp O0, CLp rain})

tan (0 - fP) itf< - kp (B-9)

since AY (t) = 0 from transversality conditions. For the sequence

(CLp rain' C OLp 0, CLp min) to exist, H p must be zero at t 't

From Eq (B-8) this occurs when

k ccs (0 - y P + sin (0 - y p A X Dp C-IV2 (B-10)p p" p ypP~

It has been stated that the physical aspects of the problem require

(0 - y ) to be negative for the control C to be optimal. Eq
p Lp rin

(B-9) confirms this requirement. For negative (0 -9 ), A isP YP
negative and A must be positive in order to satisfy 01p (Y a 0.

This implies that the right hand side of Eq (B-10) is positive and

that
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Eqs (8-10) and (B-11) imply that yp has increased with time which is

not possible with the control CLp n* It is concluded that the

control sequence (CLp n' 0, C is not an optal sequence.

A more basic conclusioa is that N cannot be zero for t < tf if the

solution is to end on a CLP sn arc. This result is used in the

following analysis.

Singular Controls

The question whether or not singular controls exist for this

problem is now considered. Initial conditions are again chosen such

that the minimizing control for the pursuer is initially CLp n"

Figure 27 shows three switching function trajectories containing

singular controls.

M;

I Iu, 1
(2) 1 M7

(3)

Figure 27. Switching Function Trajectories Containing Singular Arcs
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Trajectory 1, in Figure 27, corresponds to the control sequence

{C p .in' CLps' CLp min). This sequence can be eliminated as a possible

optimal sequence by the results previously obtained which conclude that

M p cannot be zero for t < t if the solution is to end on a CLpp f Din

arc.

Trajectory 2, in Figure 27, corresponds to the control sequence

(Cp} and trajectory 3 corresponds to the sequence (C n C
Lps Lp min' Lps

C =0).
Lp

The sequence (CLps} implies that M " and 4 are zero along the
P P

singular arc. To show that this is not an optimal sequence, setting

mI (t ) equal to zero implies
P f

tan (0" y )p - k (B-12)

Eq (B-12) implies that (0 - y ) is negative and from Eq (B-3) A is
p Yp

negative. Therefore, for t < t, A must be positive to satisfy
f Yp

p (tf) =0. M must be zero for all t. For t < tf Eq (8-8) implies
TI, f pf

P2

kp cos (0 -_y) + sin (0 -y) = D P C /Vp>0 (-13)

Eq (B-13) yields

tan (0 - y) I > - k (B-14)

Eqs (B-12) and (B-14) imply that the singular control has rotated the

flight path direction of the pursuer away from the final line of sight

direction 0. It is concluded that an optimal solution to this problem

cannot terminate on a singular arc.

The remaining control sequence to consider is (CLp min' C
LLps

C Lp 0) which corresponds to trajectory 3 in Figure 27. Let t a t I

denote the time of switching from the singular to the C = 0 arc.
L0p
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WFor t < t ' tl, 1 must equal zero. This implies from Eq (B-8) that
2 P

tan (O-y) J : k (B-is)

since A p pD CTB/V - is positive for reasons already stated. For

t > ti, M must be negative from Figure 27. This implies, using Eq

(5-8), that

tan (a - ,i tlc -k (9-16)

Eqs (B-15) and (B-16) imply that the singular control has rotated the

flight path direction away from the 0 direction. This control sequence

is therefore not optimal. *

Similar arguments can be made using M and M to show that the

sequences

CL max C Lp CLp ma x. CL CLps CLp maX

and

(CLp -CL, CL 0)

are not optimal control sequences. Control sequences involving

switching between maximum and minimum controls are not "jptiual because
they imply a rotation away from the terminal line of sight direction

0.

Conclusions

The conclusion is that for the pursuer the following control

sequences are candidates for an optimal solution:

(CL omaxpor C .0), (C or C 1 (C 0)
LP min Lp LP MaX LPmin Lp

INI A
- •.•I
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An analysis similar to this for the evader leads to the conclusion

that an optimal solution consists of one of the following control

sequences:

{C or C C C orC (CLf 0)
Lcmax Le min Le Lemax Le min

L

I
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